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WING DIAGOIWIS AHEAD OF TIP MACH

By Sidney M. Harmon

Theoretical results are obtained, by meems of the linearized theory,
for the surfac+velocity=potmtial functions, surfac~pressure distribu-
tiaus, and stability derivatives for various motions at supersonic speeds
of thin flat rectangular wings without dihedral. The investi@bion
includes steady and accelerated vertical and longitudinal motions end
steady rolling, yaw@, sidesli~ing, and pitc~ for Wch nmibers and
aspect ratios greater than those for which the Mach line from the leading
edge of the tip section intersects the trailing edge of the opposite tip
sectim. The stability derivatives eme derived with respect to prticipsl
body exes and then transformed to a systxm of stability axes. In the
case of yawing, a treatmmt for the infinitely long wing which takes
account of the spanwise variation in the stieam I&ch number is extended
to the f~te” w5ng”,and a ljlausible,although not rigorous, solution is
obta5ned for the wing tip effects.

The results for this tivestigation @rewed that positive yawing at
supersonic speeds may produce a negative rolling moment in contrast to
the lmhatim at subsmic speeds where a positive rol15ng mmknt would be
produced. The attainment of supersonic speed should produce a signifi–
cant change in the positive direction of the yawing moment per unit
rolling velocity. The results also hiicate that unstable tendencies
are pmxluced by vertical accelerations if

where A is wing aspect ratio and M is strqti &h

INTRODUCTION

Recent developments in supersonic airfoil theory

have led to the calculation of many of the supersonic

number.

(reference~ 1 to k)
stability derivatives
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.
for various plan farms. W references 5 to 8, mrlous theoretical super-
sonic stability derivatives for mall disturbances are presented for
thti flat wings of delta plan form ~ reference 9, tlw supersmic
@@? due to ro~w ia given for triangular, trapezoidal, and related
plan fOrms.

b the present paper the methods of references 4, 10, and IL, which
ere based cm the linearized theory for a uniform stream Wch number, are
used to derive the supersonic Surface=velocity-potentialfunctions for
thin flat rectangukr w@s without dihedral in steady and acce~erated
vertical motims and steady rolling, sidedipp~, and pitching motions.
The potential functians that are obtained are then used to derive formulas
for the pressure distributions and the stability derivatives for the
foregcdng motions and elso for steady yawing. Ih the case of yawing, a
simple treatment given In reference 7 for the infinitely long wing, which
takes account of the spamzke variation in stream Wch number associated
with yawing, has shown that the assumptim of a uniform Mach number is
far from adequate to describe the compressibility effects. This treat-
ment is etietied herein h order to eveluate the wing tip effects for the
yawing finitH3pan W5ng.

The steady motions that are treated herein are assumed to give small
deviations from the urdisturhed flight path and the accelerated motiaus
=e assumed to have small accelemtims. Theoretical results based an
this assumptim for steady motions have, in general, been found to be
reliable; however, the reliability of such results for unsteady motions
is as yet unverified. The results presented herein cover a range of
Wch nmiber and aspect ratio greater than that for which the Wch line
frcm the leading edge of the tip section intersects the trailing edge of
the opposite tip section.

sYMBoIs

x,y recten@ar coozWnates (see

uo>~c) induced flow velocities along

fig. 1)

x– and y-axes, respectively

z coordinate h flight direction if this directim is inclined
to x-axi13

U,v,w incremental.flight velocities slang x–, y–, end z-axes,
respectively (3ee fig. 2)

ii derivative of u tith respect to the

+ accelerated vertical motion

v undisturbed flight velocity
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~t local flight velocity after disturbance; used to indicate
inclination of flight directim to x-ads (see fig..1)

p~~yr engular velocities about x–, y-, and z-qxes, respectively
(see-fig. 2)

●

a speed of sound

M stream l!achnumber (V/a)

3=6

a wing engle of attack in steady flight, radians (w/V)

at local ticlination of airfoil smzl?acewith respect to free

()
stream, radiem —

Gu

&

t

P

c
u

h
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s

‘%

A

xcg

P

. #

E,q

derivative of a with respect to time

time following disturbance, seconds
.

angle of sideslip, @iana (v/V)

chord

wing Semispsn

me
total wing area

r&ion of integration over portion of wing surface (see fig. 3)

()z!hllaspect ratio —or-
C c

distance of origin of stability axes frcm the midchord point,
measured along x+xis, positiye ahead.of midchofi point

l.UaSSdensity of air

disturbence=velocitypotential on upper surface of airfoil

auxiliary variables which replace x and y, respectively
(see fig. 1)
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indicates,a trensfmmatim
end q-axes frm leading
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of origti of x— and y-axes or E-
*
.

edge of center section to leading
edge ‘oftip section (ya –h on right half+ing;
Ya = ‘Y –h on left U=)

pressure difference between lower and upper surfaces of a-
foil, positive ti &ection of lif% “

nondimsnsicmel coefficient express= ratio of pressure
difference between lower end upper surfaces of airfoil

()to free-stream dynamic pressure ‘—

y

cmtent gimn by equation (9)

induced suction force on wing tip per unit length of tip

forces psrellel to x-, y–, and z-axes, respectively (see
fig. 2)

longitudinal –force coefficient [+)

lateral-force

p)‘s5

()
z

vertical-force coefficient —
2+s
2

( )

skin-friction drag
skin-friction drag coefficient

:-s

moments about x—, y-, and z-axes, respectively (see fig. 2);
M is slso used to refer to Mach numiber

()
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Subscript:

1,2 contributions

()Ncoefficient —

&‘Sb

.

of normal pressures
to ‘%r;E&JO used to indicate

%’ c%’ - ~

end skin friction, respectively,

%x
component parts of c1 , .

$

Superscript:

W,p contributims caueed by vertical motion end rolling motion,
respectively

Whenever
nondimensional

through zero.

.. Ctr =

9

c%=

Pj u rj Pj ~j Uj % and, L are used as subscripts, a
,derivativeis indicated and this derivative is the slope

For example, %P=R]P+;c=l.=[~q+

Unprimed stability deriv-atives refer to principal bqiy axes;
primed stability derivatives refer to stability axes.

.. — .
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General Concepts ,

I

The coordinate axes ad the symbols used in the’analysis of the
rectangular wing are shown in figure 1. The derivation of the formulm
for the surface-velocity~otential functions, pressure distributions,
and stability derivatives is made Wtially with reference to prticipal
body axes which are fixed in the wing with the origin at the midchord of

the center sectim (~,o,o). This system of axes is shown in figure 2(a).

The transformation of these stability derivatives to a systemof stability
exes (fig. 2(b)) is discussed in the sectim entitled “Results and
Discussion.”

The stability derivatives ere detezzdned from integrations of the
forces andmments over the wing. .I?orvertical and pitching motions
which yieId equal and opposite suction forces elong the edge of each
wingtip, the On.lyrestitantforces and moments acting onthetig, if
sktn friction is neglected, are those caused by the pressures on the air-
foil surfaces. These pressures are obtainedfromthe familiar Bernoulli
equation. In rolling, yawing, or sideslippin.g,however, unbalanced .
suction forces which produce lateral forces and yawing moments are
induced along the WQ tips in addition to the forces and moments
resulting from the pressure normal to the wing surface. The subsequent
snslysis for the calculation of the stability derivatives is then
resolved to a dete~ation of the pressure distribution normal to the
surface and the unbalanced suction forces slang the win@ip edges.

The pressure Mfference.between the upper and lower surfaces
(positiveupward) at my petit on ths wing is detez.mdnedfrom the

. general BernouUi equation for small disturbances as

‘=2’(%+:) (1)

where V Is the local flight velocity and Z refers to a coordinate
measured in the flight direction. The term a@/Zlt expresses the effect
of any unsteadiness iu the flow. The velocity potential @ in equa–
tion (1) must be detemdned so as to satisfy the linearized partiaI–
differential equation (with the dependency if the motion is unsteady)
of the flow and the boundary conditions assoclated with the particular
motion under consideration. Thus, the potential must give streamlties
that are tangent to the airfoil surface end a pressure field that is
continuous at ell points gtierior to the wing. Equation (1) ShOWS tk.t

the presoure distribution on the wing is determined when the surface-
potentisl function is found.

The method of reference k is in general adaptable to the problem
of oltaining the surfac~otential function @ in supersonic flight to

.

—.-.._ —.. —— .—. —. —- —. ..= -—F . .. —-— — —— .——-—. — -.
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meet boundary conditions associated with small steady motions, such ae
vertical motions, rolling, sideslipping, end pitchhg. The method is
an efieneion, to include tip effects, of the work of Puckett and others
which uses the superposition of elementary source solutions to obtain
the potential function. ~ cases where a point on the wing is influenced
by two or more mutually interacting external fields, the interaction
introduces difficulties h the solutim for the surface potential. (See
also reference X2.) 1% any point on the wing is influenced by mly me
independent external field,’however, the potential functim in a region
affected by the wing tip may be obtained by integratim of elementary
source solutims solely over an appropriate area of the w@. The
strength of these sources”is shown to be a function only of the local
slope of’the airfoil surface with reference to the free-stream directian.
Ihasmuch as the slope of the airfoil surface ~th reference to the free-
streem direction is Im3wn for a given tition, the distribution of sources
is known and, consequently, the distributim of the surfac~otential
functim is detemined by an integraticm of the elanentary source solu-
tions over an appropriate area of the wing.

As applied to the rectangular wing at supersmic speeds, the fore-
going method of reference 4 for one independent external field is valid
as long as the foremost Wch wave frcm one tip does not intersect the
opposite tip, that is, for Mach numbers and aspect ratios for which
~~lo For this case, the potential at a point on the top surface of
a thin flat wing may be detemimd by means of equaticm (14) of reference 4
and is aa follows: ?

@(x,Ya) = y
~

CXtM d%

3-(

x – ~)2 - B2(ya - qa)2

(2)

where Ur represents the local angle of atback of the airfoil surface
at the point (~,~a). Fiw 3 shows a ty_picalregion ~ for detemdninn

the potential at a point (x,ya) h a rectangular w5ng. The figure
shows the lound.aries ~ over which the integratim must be perfomned,.
for a point (X,Ya) which is affected by the wim&5ip region. H the
point (x,ya) is located at or tiboerd of the foremost Mach ltie frm
the tip, this petit is unaffected by the tip regim and ~ is bounded
by the leading edge and the l&ch forecone fram (xjya). SU pose tit the

t’surface potential @(x,y) has been obtained frmu eqpatim 2) or by
some other method, then the differentiation of @ with respect to the
coordinate in the frm-etream direction dete?yines the pressure distribu-
tion by means of the BernouJJ.irelatim, equaticm (1).

‘I!bexpressions for determining the surface potqntial end the pressure
coefficient for unsteady motions are discussed in the section entitled
“Derivation of Formulas.”

—.—— ... . . .— —-—. . ..-—-— ---e —. — —.-—- .-—
_.. . . . . . . . —. —--- .-. -—-. --— ——
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Derivaticm of Formlas

The subsequent derivatim of formulas for the various motions will
involve first the deteminatia of distributions of surface qotential and
then the dete@naticm of surface-pressuredistributions and any
unbalanced suction forces elong the wing tips. The integrals required
for these derivaticms and also those required for the stability derivatives
are integrable either directly or after reduction by parts by means d
standard formlas such as are given in reference 13; hence, the details
for the integrations are
from radicals, care must
factors; for example, if

then

not si%wn. b the operati&s inv~lving
be used to preserve the correct si~ of

ya< o

~={i=-ra “
.

For brevity, the final formulas are amdtted frcm the
. appear only h tables at the end Of the paper. ‘Jhus,

factor~
the

derivaticms md
the distributions

of@ti Acym summarized in table I, and the ~ability derivatives
ere summarized in table II.*

All the derivatim are made specificeX1.yfor a w~ for which
AB ~ 2, that is, for which the foremoet Mach wave fran a tip does not
intersect the remote half+ring. The formulae in table I for the
potential @ and pressure coefficient &p that are obtained for

AB~ 2 can be applied tow3ngs in which lsAB~2 byustng the
principle of symme~ and superposing separately each tip effect at the
point under considerationto the value obtained for the infinitely long
wing. A consideration of this superpositionprinciple for the rectangular
wing chows, however, that the stability derivatives which are obtained
for- AB ~ 2 apply as well to wings
descripti~ of table IX is given in
Discussion.“

Vertical, Pitching, and

Derivatives 47
&

and -cZ .–
c1

for which AB z 1. A more detailed “
the section m~itled

wtim Motions

For steady pitching

‘!Resultsand

.
motion about a

lateral.axis through the midchord point, the 10CS2.slope of the airfoil.
surface with respect to the free-stream direction is

()
6;-—

as =a+
v~

where a is the angle of attack in the
obtati the potential distribution, this

—— ......-.—. -—.—-T, .-— .-.,,-

absence of pitching. b order to
value of at is substituted into

—.—-—. ---..————

.

.

.’

1’
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equation (2) and the double integration for the variables & end. qa
is perfomned between the limits hdicated h figure 3. The pressure
coefficient is then obtained from equation (1) for steady nmtions as

(3)

These preseure coefficients are then differentiatedwith respect to u
end q. The integraticms of the respective distributims of &P over

the wing and conversion to
tives -c% end 4Z .

~

Derivatives
%“

.
nondhensional units th~ give the deriva—

%“ “-Derivatives C%. aud C% are obtained

directly from the pres6ur~oe&icient distributims for &e of attack
and pitch5Jlg,thus

-i rIO nCu%=+-
hca O

where &p for angle of attack

fk-@-x)dxaYa

end pitching is given in table I.

Derivatives Cq - cxq”– At supersonic speeds the resultant

pressure force on a rectangdar ~ of zero thickness acts normal to the
surface as there is no suction at the leading edge. Thus, the fOrces
in the x-direction srise solely &ram skin friction. on the assumption
that

from

the eldn i%icticm is hiependent of a and ~ the

~ are zero.
~

Derivatives -C
~’ %’ a ~.- The derivative

the equaticm

–z = -a’cq : (v + U)*S

Then

derivatives ~
a

+%
is obtatied

.—

— - —..— — ---- ._. ______ ___ _____ — -— ..— _ -—.. .—_ .—— .—. ..—__. ——.- —.—_
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The function -C
%

is obtained from table IX. Its dependence on the

incremental flight velocity U is indicated by giving

fo~ -1 and .3 intheformfi. Then

r 1

-%

The derivative
%

is obtained from the equation

Then

The function C
%

is obtained

on u is indicated by writ-
previously for the derivative

c
la=——

% Vau

B tithe

from table II, where its dependence

a’ S@ B in the same form given

W(v + u)

4!T2-11
The derivative -C& results from skin frictlon end is obtatied

W
frm the equation

-x = ~. ; (v + U)2S Cos a

— —— -—
., -’.’,

—.. ,
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Accelerated Motions

For accelerated motions h the vertical
pressure coefficient from eqzation (1) is

plane of symmetry, the

(4)

The surface potenti&l @ in equation (4) for unsteady motions of thti
airfoils in tm—dium ional supersonic flow has been derived h refer-
ence 14. @ reference 10, the methods of references 4 W 12 for steady
flow at supersonic speeds are efiended in order to detezmdne solutions
for the surface potential and pressure coefficient for unsteady motions
in three-dhmsionel flow. ~ the present analysis the solutims obtatied
in reference 10 will be utilized to calculate the derivatives in vertical
motions with smaXl constant accelerations.

Derivatives -CZa, C%, and ~.– The surface potential @ for

uniformly accelerated motion as obtatied for the region within the tip
Wch cone is (reference 10, equation (~))

{[
]mM%(2yaB -x)

$(x,Ya) = & ‘vat + ~ ‘Ya Ya + ~

L

(5)

In converting from the notation of reference 10 for a rectsmgulam“wing
to the present notation, the following transfomnations are made: U = V,

IIl=i, a=o, p=B,c=&kl=l, ~ ~ (x + YaB), ~ = & (x - yaB), -=-Vw”=—
d% AC*
—=l, and Cp=–y.
dvw

-. —— .—-. ..-——— —.. ....— --—— —.- ——. - ..- ——-— ——-— — — -—
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In order to obtain @ In the region betwean the tip Mach cones, ya in

equaticm (5) Is set equal to - ~ W, therefore, . .

‘=W29 (6)

The pres~e coefficient ~ contributed.by the vertical accelerating

motion is obtained by partial ~erentiation of ~ (equations (5) end.(6))
with respect to x and t, by letthg t = o, ala then by substituting
these expressions for appx * a~pt h egyat.icm(4). mis process
yields in the region wi- the tip Wh cones

and ~ the regim letweaa the tip Mach cones

(7)

(8)

I@ations (7) and (8) correspmd to equation (33) of reference 10,
after the appropriate transfcmnations noted pevi.ously for ~ are made.

the corresponding Acplistributions end conversion

Wlits. The derivative ,
%

is shown to be zero by

similar to those noted previausQ for .
%

Derivatives -Cfil,~, and ~:.- For small

to nondimensional

the use of assumptions

acceleratimls +mg the
.

flight path, the potential”@ll r= substantially unchanged. The
increments in pressure caused by these acceleratims, therefore, @e
assumed to be negligible, emd the derivatives -C

%’ ~’ - -cq me
appretely zero.

Derivative C .–
%

the local slope of the

Rolltng .

Ih steady rollhg motion with angular velocity p,

airfoil surface with respect to we flow direction is .

—— .,— — . .. .._. —-,. —--.—--—--
.“
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\

ti order to obtain the potential distribution this value of at is
substituted into eqyation (2) and the double integration for the
variables 5 and ~a 2s ~erfomned between the limits indicated in
figure 3. The pressure coefficient is then obtained from eqmtion (3).
The derivative ~

!Q
is obtainetj_ by in.tegrat ing the momenta of the

Bernoulli pressure-distribution for rolling given in table I and by
converting this result to coefficient form.

Derivatives ~ and C .– ~ a rolling motion, the lateral force
P %

and yawing moment relative to body axes result entirkly fram suction
along the tips. These suction forces may be evaluated by applying a
method suggested in reference 15 for incompressible flow end mxtlfied for
compressibility effects in reference 3. !I!hus, if the induced surface
velocity normal to the mlng tip is expressed as

‘o
=—‘; “

(9)

where G is a constant, then the suction force per unit length of tip is

(A more
edge is

FS = YCp&’

general expression for edge suction that is still valid when the
ticlined to the stream is given in reference 3 and recast in

reference 7. )

consider tie hduced WaCe TelOCitY normal to We tiD of
rolling with an initial angle of attack

where the superscripts w and p refer

oh This velocity is
awing

to the potentials obtained for
a vertical motion ad a rolling ~tion, respecti~ely. J&m table I

—...—._ r._ _____ .- .— ._. _ ._. _ ———.—— —.. ..—. .... . . ......_______ ___
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end yartial differentiation

()apw(To)w= ~

NACA TN No. 1706

of ~ with respect to y yields

where ya <0. Very near the

wo(To)w.:

The potential in rollhg @ is
ticm of @’ with resyect to y
results

tip, –ya+o and

(VOF’= ~ = -aya

y

2’Va x
=——

Yt ‘Ya

gimn h table

(II)

I. By &tial. differentia-
and then by letting -ya+ O, there

hx——

3X3
[( )

—— (1’)
YCB~

!J!hereeultsnt induced surface velocity normal to the wing tip as
-Y=+O is obtained by adUng equations (n) and (12). Thus

The plus signs
. negative signs

Very near

(lo)

before p and V refer to the right wing tip and the
refer to the left wing tip.

the wing tip,
tion (9) and, therefme, the
the wing tip-is

(13)

equation (13) has the same form as eqza-

total suction force per unit length along

(14)

k equation (14) only the term L
8pxp~a h x

()ITB –z
will give rise

to a lateral force snd a yawing mome& which
this term slong the wing tips. These forces
converted to nondimensional form to give the

areobtained by integrating
and mments are then
derivatives Cy and C

P %

B

-.— .,. — ~— —.- ———.—— .——. . . . ..,. .
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The pressure
flight is

where V$ and 2
occurs the flight

Sideslip

coefficient obtained from equation (1) for steady

we measured h the flight direction. If sideslip
direction is incltied relative to the x=axis by the

sideslip angle p. The rectangular wing in sideslip, therefore, becomes
equivalent to a yawed wing with the leadhg wfng tip raked out and
the trailiug wing tip raked ti. IX the Kutta<oukowski conditim at the
trailing w5ng tip is neglected, the potential function for the yawed
rectangular plan form may be obtatied by the method of reference 4. In
reference M., the method of reference 4 is etiended in order to obtain
solutions for edges for which the Kutta<oukowskl requirement mat be
satisfled.

Physical considerations suggest, however, that for small sideslip
angles, the actual flow for t~ically rounded wtag tips would h general
be unlikely to confo?mto the Kutta<oukowski condition along the trailing
wing tip. The edge suction for a lifting wing arises because of the flow
from the botta surface to the top surface around the side edge. This
flow may be presumed to go around any boundary layer that may be presat.
The local boundary layer thus erperiaces the edge suction. Rough
calculations suggest that the edge sucticn per unit area is approxhately
constant from the leading edge to the point of msximumprofile thickness,
and then increases rapidly from the-point of meximumthiclme~s to the
trailing edge. The pressure gradient is therefore favorable and the
flow at the side edge is ~ot expected to separate. This condition should
persist for small or moderate emounts of sideslip until the additional
pressure ticrement caused by sideslip produces a str~- adverse pressure
gradient. Further theoretical and experimental investigation is required -
to obtain quantitativeresults regarding these phenomena. On the basis of
the foregoing considerations, it will be assumed in the present analysis
that the Kutta<oukowski conditim is not satisfied along the trailing
wing tip. The effect of satisfy@ the Kutta<oukowski condition slang
the traillng wing tip in sideslip is discussed in this analysis and also
h the section entitled “Results and Discussion.”

Derivative C7 .–The potential correspmdingto a thin rectangular
P

wing at an engle of attack and a finite angle of sideslip may be obtained
from reference 4, equatim (20). The correspOnUng pressure distribution
may be obtained from reference II, appendix C, equation (C4). These
solutions from references 4 and H. we~e simplified to the approdmate
form for smaU angles of
notation with respect to
,for @ and Acp caused

.—-...... .-..—-...

sideslip (id << 1) and converted to the present
axes shown in figure 1. The distributions
by combined vertical motia and sideslip are

_-—.— — .-.-.-e-—-—.—-—-—-——- --------------—-——-—--
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given in talle I. The regions for

are applicable are bounded hy Mach
velocity V’ tich is hOtia to

lULCATN IJO. 1706

which these e~esslons for # sad ~p

‘lines with respect to the stresm
the X.S by the sideslip .m@l.e P.

.

.

As notes previously, these e~essions do not s&tisfy the Ki&ta<oukowski
Ctition along the trailinn wing tip. As indicated ti reference 11,
however, the lC&ta-Jouhwski ctition along the tmiltng wing tip merely
cemcels the radicd. term fi the exyressim for Ap within ti Wh CCMO

fr~ the ~ - tip.

A cmide=tion of the fcmegoimg Ac@istmibutiaas indicates that

as a result of sideslip the lift tith@ the Wh cone freonthe leadlng
wing tip is increased, whereas the lift within the Mach cone from the
trolling wing tip is decreased. A rolllinnmrment is thereby produced.
Furthermore, as a result of sidesliy, the hlachl.hss are tied toward.
the trolling wing tip, and this ti ccmtributes an additional rolling
momentJ The magnitude of the ro.llinnmment caused by sideslip is given
in ta%le II 3n terms of the nonMmen

()
sfanal derivative CI

~ p-o”

Derivatives C= and C .– The derivatives ~ and C
$ B %

can result

solely tram suction forces which are induced at the wing tips. These suction
forces for sideslippingmotion were evalunted by a method stmilar‘tothat
described previously for ob~ C= a %P. The treatment for sideslQ .

WaEIbased on %he conclusion, noted preytiously,that the Kutta-JoukowskL
condition is unlibly to %e satisfied for typicaX1.yrounded wing tiipsat
smalJ angles of sideslip. The potential ~ for determining the induced
velocity normal to the wing tip was ottained from table 1. The resultant
laterel force and yam moment are given in nondtmnsionsl form ti table II.

Yasdng

m yawdng flight,
5s effect introduces

b

the stream velocity varies
variatias of both &ynamic

linearly
pressure

bilfty effe@s along the wing spsn. The &ace p~tatial

elong the spau.
and corupressi-
as expressed ti .

ecy.zaticm(2J satisfies the linearized potential equatim for a uniform
streem Mach nuniber,but is 3nadequate to accmmt for the compressibility
effects associated with a spsnwise variation of streem Mach number. (See
reference 7. ) The case of the trapezoidal * with tips cut off along
the Mach hes (raked tips) was analyzed ti reference 7. It was sham
that the pressure distributim could be obtained by applicatim of the
Ackeret tm-dhemimal theory ?nodlfied by using the local hh nuqiber at
each epamise statim as affected %y the yam. Ewlusion of the P
wise variation in Mach nmiber was a~ ated to have a ~ofound effect
on the pressure Ustribution. .

-— ,—.——. ..— —. —,, —— . ___
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The addition of suitable triangular tips to the aforementioned
trapezoidal.wing converts it into a rectangular wing. 5e added tip
lie wholly within the tip Mach cones and thus their addition does not
alter the pressures on the trapezoidal portions. A’rigorous solution
for the pressures on the tip portions cannot yet be demonstrated. However,
an expression that a~esrs plausible has been obtained. This pressure
distribution For the tip portions is derived.by superposing on the
Ackeret pressure distributim, as mo~ied by local Mach number, an ‘

appropriate”function which fulfiX1.sthe boundary condition for no
pressure discantinuities in the regi.m efieriw to the ~. This function
thus represents the effect of the wing cut-off and is designated.hereti
as the tip effect. The pressure tiermce & at my pofit according
to the Ackeret theory based on local Mach nuniberis (reference 7):

(151

Equation (15 ) shows that %he pressure distribution for an infinitely
long wing which has a steady yatig velocity r end ~ertical velocity w
is expressed by two compments. One of these cmpments is proportional
to w, is constant, and gives the pressure distribution contributed by
an angle of attaok in straight flight. The other componmt is proportional
to wr, givee a ldnear antisymetrical dis’bibution tith respect to y,
and expresses the pressure tistributim contributed by ya-g.

It will be recalled that the solution for steady robing, treated in
a preceding section, resulted likewise in a pressure distribution
??roP~i~ to Y h the region between the tip Wch cones. ‘Zhepressure
distributions contributed by rolling and by yawing are thus pr.opotiional
in the regicm between the tip Wch ccm.es. 5e ~ cut-off is effected by
canceling the disturbance pressures outboard of the desired tip location
by means of a function that satisfies the boundqy ccmditions on the fig.
Because the two pressure distributims to be cauceled correspond in the
YW@3 and rolling cases, the incremental pressure function or tip effect
for each case evidently mst reduce to forms which will have the same
factor of proportionality iu the entire plane of the wing outboard of
the tip. It seems reasonable to assume, thprefore, that for mall yawtng
motions the two pressure distributions wXIJ also hsve very nearly the
came factor of proportionality within the tip Wch cones.

The proportionality constant between the pressure distributions for
ro12ing end yaw5ng motions may be determhed by a compariscm of ‘bhecases
of rolling end yawing h column 4 of table I. The pressure coefficient
per unit yawing velocity is seen to be a/lJ2 times the pressure coeffi–
cient per unit rolling velocity, or

.- —----v —. .-- —. .-— —
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0% Yawing

where equaticm (16) wilJ apply

‘o=—Acp
B2p Rolling

over the whole wing.

I

lWCA TN NO. 1706

(16)

●

✎

Derivative CL .– The preceding analysis indicated”that the pressure

Q distribution per tit yawing velocity is in a simple ratio to that
prtiuced per unit ro~ing velocity (e@ation (16)). ~us

The derivative C2 has been derived previously and is given in table II.
P

Derivatives yw end c%. – When the wing yaws, the antisymmetrics2

pressure distribution which is-5ndicated by eqpaticm (15) willl.produce
unbalanced suction forces at the right and left wing tips snd thereby
give rise to lateral forces and yawing moments. In addition, skin friction ~
will contribute a yawing moment.

It appesrs that a reasonable although approximate evaluation of the .

tip suction forces in yawing c= be obtained by means of the correspcmdence
of yawing with rolling as utilized previously in deri~ equatim (16).
‘I!his procedure does not satisfy the Kutta<oukowski requirement in the
sideslip component of the stream velocity in yaw5ng; however, this
theoretical deviation is likely to be very small h the actual flow. On
the basis of these ccmsiderations,the induced suction forces an the
wing tips yer unit yawing velocity will be related in the ratio ~to

B2

the corresponding induced suction forces per unit rolling velocity which

were derived previously
( )
secticm entitled “Derivatives Cy end Cn “ .

The contributims of the tip suction forces to ~r and
k, =e”

therefore,

%r=g%ip

%,= ~ c.,

where ~ and C
%

me given in table II.
P

. ..-— —–.., ,. - —-----
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The effect of

No = Cos a TTr=

where
local

.

lJ-+do

19

skin friction on the yawing mament due to yawing is

the first bracketed
velocit~ and ~ i,s

term expresses the spare of the resultant
the local angle of sideslip: ‘

,=rQ4.
v ,

lILimhating secondmrder terms and.terms correspon~ to symetricsl
drag forces and converting N2 to coefficient ~orm fi-elds-

REWIZ’S AND DISCUSSICfN

As noted in the precedhg analysis, the nondimensimal stability
derivatives which are presented in table II were derived with reference

to principal bmiy axes with the origin at point
()
g,o,o . These results

may be transfmmed by means of the equations in the last colum of
table II to apply to stability axes with the origin at an arbitrary
distance XCR fram the midchord ~oint. The stability axes ~e shown

in fi
T

e 2(~) and are obtained by a rotaticm of the prticipal body
~es fig. 2(a)) throu@ an angle a; the origin is then shtfted a
distance q

%
along the new x-axis. T4e conversion to stability axes

was obtained y means of the transformatim formulas given ti reference 16,
with the omission of relatively unimportant terms compared to unity,
such as a2.

The formlas for the derivatives @ven in table II with reference to
principal body axes are shown plotted in figures 4 and 5 against the

Parameter AB.
(
Derivative “+& and those derivatives equal to zero

\

)are omitted from the.figures. ‘lhesecurves,show the variation of the

stability derivatives with aspect ratio for constant I&oh nunibqr. The
tiiation with Mach nuMber for cmstant aspect ratio is not directly
indicated, aLthou@ it can be detemined from the curves. These data
are shown in figure 4 for the lateral.mtability derivatives end in

-. .—. ————.. . .... -—. — ——_ — .-- —- ——. . .. . . .....= ____ ..-. ___
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figure 5 for the lmgitudmal stability derivatives. The data in
figures k and 5 are to he used ti conjunction tith the transf-tim

.- formulas presmte& ~ ta%le II-to evaluate the derivatives with respect
to stability axes. ~ the evaluatim of these derivatives, many of the
terms are lfiely to he relati~ely mall; therefore, the expressions will
noticeably simpltl?ied when such terms are neglected in the computations.

\
The reeults of the present tiestigatfon have ‘been derived on the

assumptions of zero thickness and mall disturbances. Potential flow is
. assumed except in the case of ~r and

%
in which skin friction ie

considered. 59 practical effects of the Eirtta<oukawski re@rements
which axe introduced at the wtng tips in sideslip and yawing are not
definitely known. On this basis, the data shown b figures 4 and 5 ere
expected to apply in gehersl to thin wing sections for small steady
motions, motions with small mcelerations, or oscillatory motions of
low frequency in which boundary-layer effects sre not expected to be
important● The applicabiIi& of the present theory to I&oh numbers in
thq vicinity of uni~, very hi@ Mach ntiers, or for very low aspect
ratios is uncertain.

The data h figure 4(a) show that at supersmic speeds the
B3c

derivative %?— is negative in ccmtrast with the behavior at subsonic
a

speeds where positive values would be olsta~d. This phenmencm was
potited out for the infinitely kmg wing in referauce 7 end its physical
si@ficance elaborated.uyon. For stabili@ axes, the formula for C~t

(table II) indicates that another reversal in sign to a positive value
occurs as the lkch number is increased beyond approdmately 1.41 for
typicsl rectangular -s. (Also s9e reference 7 for the ~Wtely
long W@g. )

The suction force at the lea&Ing edge of rectangular wings vanishes
at supersonic speeds. This factor should have an important =luence an
the derimtives ~1 and C~ as supersonic speeds ere attained. D

the cas9 of ~pT (sta~ility axes), the results of the present analysis

tidicate that at supersmic speeds the sign of
%

T will have ~ositive

values in meny typical cases in contrast to negative values normslly
obtained at subsonic speeds. Ih the case of

%
or ~rT, the loss of

leadin~e suction tends to be compensated by the spenwi.secompressi–
bility effects associated with sqerscmic speeti.

As noted previously ti the analysis, tlfeKutta-Joukowski condition
is unlikely to he satisfied elong the traiWng wing tip for a typically
romded wing tip at mall mgles of sideslip. Therefore, the results
for ~~P @ figure k(a) are applicable where the Kutta~oukowski

be

.

.

.

—. .— .-—. ----.,.- ,--.:-.. ..-.,.. ---
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condition al.cmgthe wing
determh~ the effect on

trailing edge is not satisfied. Ih order to

%6 of satisfying the Kutta<oukowski condition .

along the tmf 1fng wing tip; the formula for C~ which meets this
B ●

requirement was also obtdned and is as follows:

.2,=+.3+-+->
A comparison of this formula tith the data for CZB given in figure k(a)

indicates that the effect of satisfying the Kutta<oukow= condition
alcmg the trailing wing tip reduces negatively the values of %. fran

those obtained by neglecting the lGr&ta-Joukowskiconditibn. I?or’’exsmple
for B = lsJld AB = 4, when the Kutta<oukowski conditim along the
traj~g ~ tip is neglected, C2P = -O. 083a; snd when the ~tta+OUkOW&i

condition is satisfied along the trailing wing tip, CZB = O.l&. Thus,

it is expected that whau the sideslip angle becomes l&ge, the dihedral
effect <2

$
should be reduced significantlybecause of the Kutta–

Joukowski c&dition along the trdllnn ~ tip.

The longitudhal stability derivatives h fi~e 5 refer to an ~
axis whose origin is located at the midchord point. The data h figme 5(b)
for B

%
show that rectangular -s, tith reference to this origin,

have sn reasinQy unstable pitcldng mcmmnt with decreasing aspect
ratio which corresponds to a forward shift in the aerodynamic center.
For infinite aspect ratio, the aerodynamic center is located at the
midchord point or B = O.

L
IX’the aspect ratio is decreased.to a

value of k for a Wh number of 1.41, fi~e 5 hdicates a forward
shift of the aerodynamic center of 0.025 chord. With constant Mach
nmiber, the ratio B%&c% is obtatied fim figure 5 solely as a
function of AB. These’data indicate that with constant aspect ratio
and increasing Mach number, the aerodynamic center will shift rearward.
For an aspect ratio of k, an increase in liachnuniberfrom 1.4 to 1.9 wltl
shift the a8rodynemic center rearward 0.01 ch6rd.

The derivative -C% given in table II for infinite aspect ratio

is negative which indicates negative damping or instability. ‘lb
ratio ~/~~ fr~ table ~ gives the location of the center of pressure

of the resultant lift contributed by &. By taking this’ratio for
infinite aspect ratio; the center of pemure is found to be located at

a point ~ c behind the lead~ edge. The negative daq~ produced

.

-. ———-— .._ ._. . . . . . .._. .—— __ .._- _____ . ... ——— _ _.. _ _...__ _____
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by &, therefore, gives en unstable pitch@ mament for centeHf-

gravity locatims ahead of x = ~ c. These unstable tendencies caused

by~ere mimlmized by the effe& of finite span
2

due to Cza d.if3appef3rsentirely if AB ~ Q.
3

end the instabili@

A theoretical i?rvestigatim has been made by meens of the linearized
theory to obtati f~s for W surfactielocity~otential fuzwtio~ j
surfac-pressure distributim, and stability derivatives for various
motians at supermnic speeds for rectangular wings M Zero thicbess
without dihedral. The tivesti@ion included steady and accelerating
vertical and longitudinal motians and steady rolMng, yawing, side~ipping,
and pitching for Mach zuuibersand aspect ratios greater then those for
whic~ the l&ch llne from the leading-edge of the-tip
the trail- edge of the opposite tip section.

The folladng sigdficer& cancluEimE have been
tivesti~ticm:

section intersects

Obtahea for this

1. At eupersomic speeds for I&oh nmibers smaller than a~oximately
1.41, positive yewing gene= results fn a negative rollhg DKmlentill
contrast to the behavior at subsmic speeds vhere a positive rolling
mment is produced.

2. The attdnment of supersmic speed produces a significant change
in the positive direction of the yaw3ng moment ~er unit rolling velocity.

3. For =imite aspect ratio, a canstent vertical acceleration
causes a negative damping in the vertical motia, and an unstable pitching

moment for cente~~tity locatims ahead of the $ -chord point.

These unstable tendencies ere ~zed by the effects of fhite span
and the tnstabili& due to the rate of change of lift with vertical accelera-

G~M2;1tion disappears entirely if A M2 where A is the aspect

ratio and M is the Mach number.

.

Langley Aeronautical Laboratory
National Advisov Comaittee for Aeronatiics

Langley Field, Va., June 30, 1948
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F@ure 1.- Axes and notation used in analysis.
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(a) Principalbodyaxes. Originatcenterofwing.

(b) Stability axes. Origin at point --x
r )~ ~g,o,o .

PrincipalbodyaxesdottedforCornparisom
●

F@re 2.- Velocities,forces,and moments relativetoprincipalbodyand
stabilityaxes.

.
.
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.

wingtip

L,E. (

/ .-

x(

\

\
\

\,a=.ya-x-k
B

Figure 3.- Region of integration for obtaining supersonic veloci~-potential
function for rectangular-wing of finite wing span. Region of integration
for point (X,ya) shown biusswtched; ya = Y -‘h on right half-~g;

ya = -y - h on lef;, ha~--wing..-,., ..
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,
,

.

0 4 8 /2 /6 20
AB

(a),Rolling-moment-coefficientderivatives.

Figure 4.- Variationofsupersoniclateralstabllitgderivativeswithaspect
ratio-Mach number parameter. Derivativeswithrespecttoprincipal
body axes;thinflatrectangularwing;no dihedral.(SeetableIIfor
conversiontostabilityaxes.)
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(c) Side -force-coefHcient derivatives.

Figure 4.- Concluded.
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(a) Vertical-force-coefficient
derivatives.
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(b) Pitching-moment-coefficient
derivatives.

Figure 5.- Variationofsupersoniclongitudinalstabilityderivativeswithaspect
ratio-Mach number parameter. Derivativeswithrespecttoprincipalbody
axes;thinflatrectangularwing. (Seetable~ forconversiontostability
axes.)
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